metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fa-Yan Meng,^a Li-Hong Zhu,^b Ming-Hua Zeng^a* and Seik Weng Ng^c

^aDepartment of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, ^bDepartment of Chemistry, Huanggang Normal College, Huangzhou 438000, Hubei, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.028 wR factor = 0.078 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

mer-Triaqua(2-carboxylatophenoxyacetato)cobalt(II)

Received 18 April 2005 Accepted 22 April 2005

Online 14 May 2005

In the title compound, $[Co(C_9H_6O_5)(H_2O)_3]$, the Co^{II} atom is coordinated by three O atoms from the 2-carboxylatophenoxyacetate ligand in meridional sites, forming chelate rings. The other three coordination sites of the octahedron are occupied by the water molecules.

Comment

The preceding report describes a polymeric zinc(II) complex with 2-carboxylatophenoxyacetic acid (2-cbphacH₂) as a ligand, $[Zn(2-cbphac)(H_2O)]_n$; this was synthesized hydro-thermally. The compound adopts a carboxylate-bridged chain motif (Zhu *et al.*, 2005). Under non-hydrothermal conditions, the cobalt(II) compound crystallizes as the title monomeric complex, $[Co(2-cbphac)(H_2O)_3]$, (I).

In (I), the Co^{II} atom is coordinated by three O atoms from the 2-cbphac²⁻ ligand which occupy *mer* sites; adjacent complexes are linked by $O-H\cdots O$ hydrogen bonds (Table 2) into a three-dimensional network. The cobalt(II) complex of 3-carboxyphenoxyacetic acid (3-cbphacH₂) exists as [Co(3cbphacH)₂(H₂O)₄], in which the 3-carboxyl group retains the acid H atom (Li *et al.*, 2004).

Experimental

Cobalt(II) nitrate hexahydrate (0.149 g, 0.5 mmol) and 2-carboxyphenoxyacetic acid (0.196 g, 1 mmol) were dissolved in ethanol (3 ml) and water (15 ml) to give a purple solution. Crystals of (I) separated from the solution after a week (yield *ca* 70%).

Crystal data

$C_0(C_9H_6O_5)(H_2O_3)$	$D_x = 1.744 \text{ Mg m}^{-3}$
$M_r = 307.12$	Mo $K\alpha$ radiation
Monoclinic, P_{2_1}/c	Cell parameters from 934
$a = 8.762 (1) \text{ Å}_{1}$	reflections
$b = 6.7707 (8) \text{\AA}$	$\theta = 3.2 - 27.0^{\circ}$
c = 19.841 (2) Å	$\mu = 1.50 \text{ mm}^{-1}$
$\beta = 96.515 \ (2)^{\circ}$	T = 295 (2) K
$V = 1169.5 (2) \text{ Å}^3$	Block, dark purple
Z = 4	$0.36 \times 0.25 \times 0.21 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Bruker SMART 1K area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.615, T_{max} = 0.744$ 6758 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.062549 reflections 187 parameters H atoms treated by a mixture of independent and constrained refinement 2549 independent reflections 2132 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 27.0^{\circ}$ $h = -9 \rightarrow 11$ $k = -8 \rightarrow 7$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0461P)^{2} + 0.1445P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.20 \text{ e} \text{ Å}^{-3}$

 $l = -25 \rightarrow 22$

Table 1

Selected geometric parameters (Å, °).

Co1-O2	2.031(1)	Co1–O1w	2.097 (2)	
Co1-O3	2.203 (1)	Co1 - O2w	2.044(1)	
Co1-O4	1.989 (1)	Co1-O3 <i>w</i>	2.108 (2)	
02 - Co1 - O3	76.77 (5)	$O_3 - C_0 - O_{3w}$	90.14 (6)	
O2-Co1-O4	160.59 (6)	O4-Co1-O1w	90.28 (7)	
O2-Co1-O1w	90.82 (7)	O4-Co1-O2w	102.11 (6)	
O2-Co1-O2w	97.28 (6)	O4-Co1-O3w	89.96 (7)	
O2-Co1-O3w	89.57 (7)	O1w-Co1-O2w	88.81 (6)	
O3-Co1-O4	83.83 (5)	O1w-Co1-O3w	178.16 (6)	
O3-Co1-O1w	91.69 (6)	O2w-Co1-O3w	89.35 (6)	
O3-Co1-O2 <i>w</i>	174.04 (6)			
O2-C1-C2-O3	0.0 (3)	03-C3-C8-C9	-1.7 (3)	
C2-O3-C3-C4	1.5 (3)	C3-C8-C9-O4	-3.2 (3)	

 Table 2

 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w - H1w1 \cdots O5^{i}$	0.85(1)	1.93 (1)	2.760 (2)	166 (3)
$O1w - H1w2 \cdots O4^{ii}$	0.85(1)	1.97 (1)	2.804 (2)	169 (2)
$O2w - H2w2 \cdots O1^{iii}$	0.84(1)	1.93 (1)	2.766 (2)	173 (2)
$O2w - H2w1 \cdots O5^{ii}$	0.84(1)	1.87 (1)	2.703 (2)	171 (2)
$O3w - H3w1 \cdots O2^{iii}$	0.85(1)	1.92 (1)	2.757 (2)	167 (3)
$O3w - H3w2 \cdots O1^{iv}$	0.84 (1)	2.03 (1)	2.861 (2)	172 (2)
		1 3		

Symmetry codes: (i) x, 1+y, z; (ii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) x, y-1, z.

The carbon-bound H atoms were positioned geometrically (C–H = 0.93 Å for the aromatic H atoms and 0.97 Å for the methylene H atoms) and were included in the refinement in the riding-model approximation, with U_{iso} (H) values set at 1.2 times U_{eq} (C). The water

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

H atoms were located in difference Fourier maps and refined isotropically, with restraints of O-H and H \cdots H distances to 0.85 (1) and 1.39 (1) Å, respectively.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Guangxi Normal University and the University of Malaya for supporting this study.

References

- Bruker (2001). SADABS (Version 6.45), SAINT (Version 6.45) and SMART (Version 5.0). Bruker AXS Inc, Madison, Wisconsin, USA.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. & Huo, L.-H. (2004). *Chin. J. Struct. Chem.* 23, 835–838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m916-m918.