Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fa-Yan Meng, ${ }^{\text {a }}$ Li-Hong Zhu, ${ }^{\text {b }}$ Ming-Hua Zeng ${ }^{\text {a }}$ * and Seik Weng $\mathbf{N g}^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Huanggang Normal College, Huangzhou 438000, Hubei, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.078$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

mer-Triaqua(2-carboxylatophenoxyacetato)cobalt(II)

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$, the $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by three O atoms from the 2-carboxylatophenoxyacetate ligand in meridional sites, forming chelate rings. The other three coordination sites of the octahedron are occupied by the water molecules.

Comment

The preceding report describes a polymeric zinc(II) complex with 2-carboxylatophenoxyacetic acid (2-cbphacH2) as a ligand, $\left[\mathrm{Zn}(2 \text {-cbphac })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$; this was synthesized hydrothermally. The compound adopts a carboxylate-bridged chain motif (Zhu et al., 2005). Under non-hydrothermal conditions, the cobalt(II) compound crystallizes as the title monomeric complex, $\left[\mathrm{Co}(2-\mathrm{cbphac})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$, (I).

(I)

In (I), the $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by three O atoms from the 2 -cbphac ${ }^{2-}$ ligand which occupy mer sites; adjacent complexes are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) into a three-dimensional network. The cobalt(II) complex of 3-carboxyphenoxyacetic acid (3-cbphacH $)_{2}$) exists as $[\mathrm{Co}(3-$ cbphacH $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, in which the 3 -carboxyl group retains the acid H atom (Li et al., 2004).

Experimental

Cobalt(II) nitrate hexahydrate ($0.149 \mathrm{~g}, 0.5 \mathrm{mmol}$) and 2-carboxyphenoxyacetic acid ($0.196 \mathrm{~g}, 1 \mathrm{mmol}$) were dissolved in ethanol (3 ml) and water $(15 \mathrm{ml})$ to give a purple solution. Crystals of (I) separated from the solution after a week (yield ca 70%).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$	$D_{x}=1.744 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=307.12$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 934
$a=8.762(1) \AA$	reflections
$b=6.7707(8) \AA$	$\theta=3.2-27.0^{\circ}$
$c=19.841(2) \AA$	$\mu=1.50 \mathrm{~mm}^{-1}$
$\beta=96.515(2)^{\circ}$	$T=295(2) \mathrm{K}$
$V=1169.5(2) \AA^{3}$	Block, dark purple
$Z=4$	$0.36 \times 0.25 \times 0.21 \mathrm{~mm}$

Received 18 April 2005 Accepted 22 April 2005 Online 14 May 2005

Data collection

Bruker SMART 1K area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\min }=0.615, T_{\max }=0.744$
6758 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.078$
$S=1.06$
2549 reflections
187 parameters
H atoms treated by a mixture of independent and constrained refinement

2549 independent reflections 2132 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-9 \rightarrow 11$
$k=-8 \rightarrow 7$
$l=-25 \rightarrow 22$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0461 P)^{2}\right.
$$

$+0.1445 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 2$	$2.031(1)$	$\mathrm{Co} 1-\mathrm{O} 1 w$	$2.097(2)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.203(1)$	$\mathrm{Co} 1-\mathrm{O} 2 w$	$2.044(1)$
$\mathrm{C} 1-\mathrm{O} 4$	$1.989(1)$	$\mathrm{Co} 1-\mathrm{O} 3 w$	$2.108(2)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3$	$76.77(5)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 3 w$	$90.14(6)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 4$	$160.59(6)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 1 w$	$90.28(7)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1 w$	$90.82(7)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 2 w$	$102.11(6)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2 w$	$97.28(6)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 3 w$	$89.96(7)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3 w$	$89.57(7)$	$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 2 w$	$88.81(6)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$	$83.83(5)$	$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 3 w$	$178.16(6)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1 w$	$91.69(6)$	$\mathrm{O} 2 w-\mathrm{Co} 1-\mathrm{O} 3 w$	$89.35(6)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 2 w$	$174.04(6)$		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	$0.0(3)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	$-1.7(3)$
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$1.5(3)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 4$	$-3.2(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O}^{\text {i }}$	0.85 (1)	1.93 (1)	2.760 (2)	166 (3)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4^{\text {ii }}$	0.85 (1)	1.97 (1)	2.804 (2)	169 (2)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 1^{\text {iii }}$	0.84 (1)	1.93 (1)	2.766 (2)	173 (2)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O}{ }^{\text {ii }}$	0.84 (1)	1.87 (1)	2.703 (2)	171 (2)
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.85 (1)	1.92 (1)	2.757 (2)	167 (3)
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 1^{\text {iv }}$	0.84 (1)	2.03 (1)	2.861 (2)	172 (2)

Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $x, y-1, z$.

The carbon-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ for the aromatic H atoms and $0.97 \AA$ for the methylene H atoms) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values set at 1.2 times $U_{\text {eq }}(\mathrm{C})$. The water

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

H atoms were located in difference Fourier maps and refined isotropically, with restraints of $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances to 0.85 (1) and 1.39 (1) A., respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Guangxi Normal University and the University of Malaya for supporting this study.

References

Bruker (2001). SADABS (Version 6.45), SAINT (Version 6.45) and SMART (Version 5.0). Bruker AXS Inc, Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. \& Huo, L.-H. (2004). Chin. J. Struct. Chem. 23, 835-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhu, L.-H., Zeng, M.-H. \& Ng, S. W. (2005). Acta Cryst. E61, m916-m918.

